Aesthetics of Matplotlib graphs

The graph shown in my earlier postis not clear and it looks wrong. I have improved it to some extent using this code. Matplotlib has many features more powerful than what I used earlier. I have commented the code used to annotate and display the actual points in the graph. I couldn’t properly draw the tick marks so that the red graph is clearly shown because the data range wasn’t easy to work with. There should be some feature that I still have not explored.

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np

def main():
    gclog = pd.DataFrame(columns=['SecondsSinceLaunch',
    with open("D:\\performance\\data.txt", "r") as f:
        for line in f:
            strippeddata = line.split()
            gclog = gclog.append(pd.DataFrame( [dict(SecondsSinceLaunch=strippeddata[0],
                                                     RealTime=strippeddata[4])] ),
    print gclog
    #gclog.time = pd.to_datetime(gclog['SecondsSinceLaunch'], format='%Y-%m-%dT%H:%M:%S.%f')
    gclog = gclog.convert_objects(convert_numeric=True)
    fig, ax = plt.subplots(figsize=(17, 14), facecolor='white', edgecolor='white')
    ax.axes.tick_params(labelcolor='darkblue', labelsize='10')
    for axis, ticks in [(ax.get_xaxis(), np.arange(10, 8470, 100) ), (ax.get_yaxis(), np.arange(10, 9125, 300))]:
        if False: axis.set_ticklabels([])
    plt.grid(color='#999999', linewidth=1.0, linestyle='-')
    map(lambda position: ax.spines[position].set_visible(False), ['bottom', 'top', 'left', 'right'])
    ax.set_xlabel(r'AfterSize'), ax.set_ylabel(r'TotalSize')
    ax.set_xlim(10, 8470, 100), ax.set_ylim(10, 9125, 300)    
#     for i,j in zip(sorted(gclog.AfterSize),gclog.TotalSize):
#         ax.annotate('(' + str(i) + ',' + str(j) + ')',xy=(i, j))
if __name__=="__main__":


In fact after finishing the Principal Component Analysis section of a Machine Learning course I took recently I realized beautiful 3D graphs can be drawn.


One Response to Aesthetics of Matplotlib graphs

  1. Pingback: Parsing Java Micro-benchmarking Harness data using dplyr – Part 2 | MindSpace

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: