Throughput and Response time curves using R

I started using ‘R’, the statistical language, recently but its power is sorely missed in the IT industry especially in the project management and Capacity planning fields. In fact rigorous data quantification and analysis is given the short shrift by us in our software management activities like calculation of schedule variance and trends.

‘R’ in combination with PDQ helps us visualize the throughput and response time data. We should also be able to predict future performance by changing the service demands assuming that a faster disk or CPU is added. But that is a slightly more involved exercise.

This simple script shows response time graphs of multiple devices in the same graph.

The second graph shows throughput curves. We just have to use GetThruput instead of GetResponse.

library(pdq)

# PDQ globals
load<-400
think<-20

cpu<-"cpunode"
disk1<-"disknode1"
disk2<-"disknode2"
disk3<-"disknode3"



cpudemand<-0.092
disk1demand<-0.079
disk2demand<-0.108
disk3demand<-0.142

workload<-"workload"

# R plot vectors
xc<-0
yc<-0

for (n in 1:load) {
	Init("")

	CreateClosed(workload, TERM, as.double(n), think)

	CreateNode(cpu, CEN, FCFS)
	SetDemand(cpu, workload, cpudemand)

	Solve(EXACT)

	xc[n]<-as.double(n)
	yc[n]<-GetResponse(TERM, workload)
}
plot(xc, yc, type="l", ylim=c(0,60), xlim=c(0,450), lwd=1, xlab="Vusers", ylab="seconds",col="violet")

text(370,13,paste("cpu-",as.numeric(cpudemand)))

# R plot vectors
xc1<-0
yc1<-0

for (n in 1:load) {
	Init("")

	CreateClosed(workload, TERM, as.double(n), think)

	CreateNode(disk1, CEN, FCFS)
	SetDemand(disk1, workload, disk1demand)

	Solve(EXACT)

	xc1[n]<-as.double(n)
	yc1[n]<-GetResponse(TERM, workload)
}
lines(xc1, yc1,lwd=1,col="blue")
text(400,10,paste("Disk 1-",as.numeric(disk1demand)))

# R plot vectors
xc2<-0
yc2<-0

for (n in 1:load) {
	Init("")

	CreateClosed(workload, TERM, as.double(n), think)

	CreateNode(disk2, CEN, FCFS)
	SetDemand(disk2, workload, disk2demand)

	Solve(EXACT)

	xc2[n]<-as.double(n)
	yc2[n]<-GetResponse(TERM, workload)
}
lines(xc2, yc2,lwd=1,col="green")
text(330,17,paste("Disk 2-",as.numeric(disk2demand)))

# R plot vectors
xc3<-0
yc3<-0

for (n in 1:load) {
	Init("")

	CreateClosed(workload, TERM, as.double(n), think)

	CreateNode(disk3, CEN, FCFS)
	SetDemand(disk3, workload, disk3demand)

	Solve(EXACT)

	xc3[n]<-as.double(n)
	yc3[n]<-GetResponse(TERM, workload)
}
lines(xc3, yc3,lwd=1,col="red")
text(240,20,paste("Disk 3-",as.numeric(disk3demand)))

Load vs Response

Load vs Throughput

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: